
Aspects of Pervasive Information Management:
an Account of the Green Move System

Emanuele Panigati, Angelo Rauseo, Fabio A. Schreiber and Letizia Tanca

Dipartimento di Elettronica e Informazione

Politecnico di Milano, Via Ponzio, 34/5 - 20133 Milan, Italy

Email: {panigati,rauseo,schreibe,tanca}@elet.polimi.it

Abstract—The Green Move project aims at realizing a zero-
emission-vehicle (ZEV) sharing service that also includes perva-
sive information distribution. In this paper we discuss the use
of context-aware techniques applied to data gathering, shared
services, and information distribution; we also discuss how a
context-aware approach applied to these tasks leads to the
reduction of (noisy) information delivered to the users and to
the personalized distribution of information. Privacy of data is
also a main concern in the realization of the project, and a
privacy-safe approach to information distribution and advertising
is adopted. The project, grounded in many results on the use
of context-awareness already published by the same authors,
aims at building a real-life system based on them. Eventually, we
briefly describe the rapid prototype produced and the approach
employed so far for the realization of the full system.

I. INTRODUCTION

Nowadays technologies enhance most aspects of everyday

life. A technology which is able to seamlessly integrate in

our way of living as a part of it becomes pervasive [15]:

from biomedical monitoring – e.g. continuous health care –

to automotive (e.g. self-driving or assisted-driving vehicles),

large numbers of very small sensors and embedded systems

participate in processes and data flows through the support of

many different technologies. Such a large number of involved

entities generate interesting issues about energy consumption,

network connections, computation resources and, last but not

least, data management. Huge amounts of data, coming from

possibly large collections of participating entities, have to be

collected, re-distributed and analyzed in a reasonable amount

of time, in order to obtain useful and up-to-date information.

Such a scenario is instantiated in the Green Move (GM) [1]

project, whose aim is a zero-emission-vehicle (ZEV) sharing

service for the city of Milan. In Green Move the core services

are surrounded by a social-like platform to support users in a

large urban context. The ZEV-sharing service provides four

different service configurations, designed to meet different

user-category requirements:

condo-sharing for users who live in apartments and decide

to share a (set of) vehicle(s) for daily usage (e.g. going

to the supermarket, taking children to school, ...). This

configuration is usually two-ways: the user returns the

vehicle to the same place where he/she got it, typically

the condo parking;

firm-sharing for firms outsourcing their company vehicles to

the GM sharing service. This configuration is usually

two-ways like condo-sharing;

world-of-services users use a GM vehicle to reach a point of

interest – e.g. a museum, or a department store, which has

an agreement with GM – offering dedicated services to

GM customers (e.g. having the museum ticket charged on

the GM monthly bill to skip the queue at the ticket office).

This configuration is typically one-way: the user shall

release the vehicle at a GM reserved parking nearby the

aggregation point, any further usage will be independent:

the user could reserve a different vehicle (or the same if

it is available) for moving away after having enjoyed the

service;

generic users whose needs are not represented in any of the

previous configurations.

The GM system also aims at providing a complete user

experience of core and accessory services, like integrated

services offered by GM commercial partners in the city,

service and traffic information and advertising based on users’

interests and GPS position. To fulfill such objectives we

propose a context-aware approach to realize and manage

situation-dependent services and support processing of data

flows to extract interesting information accordingly. The ap-

proach drives the data flows since its gathering phases, even

from sensors, selectively retrieving data only in quantity and

format useful according to the current context: e.g. driving

downtown is different from driving in the suburbs, thus the

user reasonably expects different information – like traffic

density or the presence of restricted areas – and with different

frequencies.

With a growing number of vehicles and users, the amount

of collected and exchanged data will make the efficiency of

advanced services a critical issue: in this perspective, the use of

selective and efficient context-aware data gathering processes,

which filter the information on the basis of the context(s) of

its acceptor(s), can certainly improve the effectiveness and

scalability of the system.

The paper is organized as follows: we present the data

management subsystem of GM in more detail in Section II; a

perspective about how context is modeled in our approach is

presented in Section III and specific applications of the pro-

posed approach in Section IV. A prototype of the core context-

aware functionalities is described in Section V. Conclusions

and future work are presented in Section VI.

2012 IEEE 15th International Conference on Computational Science and Engineering

978-0-7695-4914-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICCSE.2012.93

648

Figure 1. The GM data management system architecture

II. GREEN MOVE INFORMATION MANAGEMENT

The architecture of the GM system envisages three main

components (see Figure 1): (i) a central platform designed

to manage infrastructural aspects and information flows, (ii)

on-vehicle components (Green e-Boxes) and (iii) the users’

personal devices.

The central platform of the system includes GM data and

application servers, the main tasks of which are maintaining

data in all the needed formats, making the GM web-based

application and pervasive information messages and ads avail-

able. Thus, the central platform comprises the GMCA (GM

Context-Aware) and the GMID (GM Information Distribution)

modules (see Section V) to handle vehicle reservation and

assignment, user experience personalization and information

distribution in the whole system.

The ICT core of each vehicle connected to the system

is known as the Green e-Box, an Android-powered board

configured with ad-hoc applications integrated within the GM

system. By installing the Green e-Box on a vehicle, car man-

ufacturers, companies and private users shall be able to join

the system and share their vehicles within the frameworks of

the provided service configurations. Each Green e-Box works

in association with the GM server: the GM server provides

services and data to support security, navigation, traffic and

vehicle management, from door unlocking to GPS navigation,

while the Green e-Boxes provide local data analysis and an

interface to the GM system. In particular, the Green e-Box

gathers and possibly pre-processes data from sensors before

sending them to the GM server, displays1 to the users useful

information about the trip2 received from the GMID and acts

1If the Green e-Box is not supplied with a display, this function can be
performed by the user personal device.

2Except advertisements, that are limited to the user personal device (see
Section IV-C)

as local controller for reservation handling.

The user personal device interacts both with the Green e-

Box – to handle the vehicle management operations (doors

lock/unlock, engine enabling, ...) – using either a a Bluetooth
or NFC connection, and with the GM server by means of the

GMID to display useful ads and/or service information.

The system main data store is a relational database which

stores all data concerning users, vehicles, Green e-Boxes and

accessory information. Highly dynamic data coming from

sensors are managed in the system using the PerLa framework

(see Section IV-B) and are used for taking immediate actions

– like notifying a driver that the battery charge is low or about

a traffic jam in the neighbourhood – as well as for subsequent

analyses – e.g. for building traffic models. Since sensor data

come in streams and transactional ACID properties need not

be guaranteed, they are stored in a NoSQL database, thus

allowing fast and effective access.

The conceptual schema in Figure 2 represents the main enti-

ties and relations from the GM database. The VEHICLE entity

contains data about each vehicle registered with the system

and it is related to the GREEN EBOX entity, which is also

responsible for data gathering from sensors, e.g. GPS. User

data are collected in the USER entity: from the hierarchy it

appears that such entity contains data about both the users that

plainly make use of GM services - customers - and about users

that share their own vehicles through GM - owners; however

these roles could be not fully disjoint, e.g. a customer can also

be the owner of some GM vehicles. Users are related to their

personal devices (owns relation) and to vehicles by means of

two different relationships 1) the owned_by relationship that

connects every owner to his/her owned vehicles, 2) the makes
relationship, that through the entity reservation, connects

each user with his own assigned vehicle. Other data about any

other kind of service related to a particular reservation are

contained in the entity SERVICE and in its related entities.

All the data represented in Figure 2 are stored in the GM

relational database, except for the data related to GPS and

SENSOR, which use the NoSQL database.

Running example
We refer to the following simple scenario to give some prac-

tical examples. “Mr. Guido Verde” registered himself to the

GM condo-sharing facility available at his condo, including

a parking lot with a recharging station. Once registered, he

decided to take full advantage of all services; he specified his

data to the system and downloaded the GM application to

his smartphone filling the private part of his profile. Besides

more occasional usages, Mr. Verde typically uses the electric

cars to take his granddaughter to school every morning, and

sometimes stops, on the way home, at the supermarket for

some shopping. Thanks to the private profile in the GMID

client on his smartphone, Mr. Verde can receive interesting

traffic and commercial information and ads according to his

current context (GM configuration, location, selected interest

topic...).

649

Figure 2. Excerpt from the ER model designed for the GM system

III. MODELLING CONTEXT IN GREEN MOVE

In GM context is modeled by means of the Context Di-

mension Tree model (henceforth simply CDT) [3], a powerful

and flexible modeling formalism, where contexts [7] are com-

posed starting from an application-dependent set of properties

characterizing users, interacting systems and the environment

surrounding them. Specific features of the GM scenario have

driven some interesting innovations, reported in the following.

A. Context Dimension Tree (CDT)

The CDT of Figure 3 represents the perspectives envisaged

to contextualize GM data and to offer personalized car-sharing

and information-distribution services (see Section IV-C). A

CDT is made of nodes from a set N = ND∪NV ∪NV P∪NDP .

Circular black nodes represent envisaged dimensions di ∈
ND for the supported application scenario, i.e. the different

perspectives identified by the designer to analyze context.

Circular white nodes represent the values vi ∈ NV taken by

the dimensions; these values can in their turn be analyzed

w.r.t. other dimensions, or have value parameters pVi ∈ NV P

attached to them. A value parameter is represented by a

white squared node and allows to refer to specific data: as

an example, the value “customer” of the dimension “Role”

features the parameter “customerID”. Children of a dimension

can be values or dimension parameters pDi ∈ NDP . A

dimension parameter is represented by a white double-circle

node and acts as a shorthand for representing a high number

of possible values of the parent dimension; an instance of a

dimension parameter is therefore equivalent to a value.

Context elements cei are built starting from CDT nodes;

they represent statements of the form dimension=value.

In particular a value can also contain a parameter (e.g.

customer<IDvalue>), or can be a dimension parameter

(e.g. ageClass). From a formal point of view, a context

(also called context instance) CI is defined as a conjunction

of context elements CI =
∧n

i=1 cei. An example of context

instance is the case of Mr. Verde looking for a cultural

aggregation point: here the dimension Role takes the value

customer<1101>, the dimension Aggregation_type
takes the value cultural, the dimension Vehicle_type
takes the value car and the dimension Service_type takes

the value condo.

In the CDT of Figure 3, the dimensions found immediately

below the root, called top dimensions (Role, Interest topic,

Vehicle type, Local conf, Service type, Time, Location) de-

termine, through their directly attached values, the main per-

650

spectives for filtering the data in the GM database; their

sub-dimensions provide a more detailed specification where

needed.
Application constraints, preventing the construction of un-

wanted context instances, are specified by logical formulas, as

defined in [3], [4]. Examples are useless-context constraints,

used to prevent conjunctions of any number of context ele-

ments from being present in a context instance. Binary useless-

context constraints can be graphically represented by means

of edges between two white nodes.
The main objective of the CDT filtering approach is data

tailoring, that is, to filter the data according to the different

context instances; this is done by means of contextual views,

i.e. views selecting only the interesting data. The process starts

associating one view, called a partial view, with each context

element. The view associated with a context is then assembled

by appropriately composing the partial views associated with

its context elements [3], [4], [12].

B. Local CDTs
The Green Move application needs, especially with re-

spect to privacy, triggered an innovation in the CDT context-

modeling approach. Indeed, it seems appropriate that the

private profile and specific needs and tastes of a Green Move

customer should be unknown to the Green Move server, resting

within the user personal device. In this case, we need to

distribute the context data to different locations, leading to

the introduction of a combined CDT comprising a primary
CDT and one or more local CDTs.

A local CDT in the Green Move system is maintained

locally to user devices and is used to complete the context-

based data filtering. For each Green Move customer, the

system will compose a specific combined CDT from the

primary one, maintained by the server, and the local one,

available on the personal device.
The composition of a local CDT with a primary one must

comply with the CDT design constraints described in detail in

in [3]; In the CDT of Fig. 3, the dimension Local_conf has

as possible values the roots of the local CDTs. A combined
context CC of a combined CDT is then easily defined as

the conjunction of a context CP of the primary CDT and

a context CL of a local CDT, and thus it is nothing more than

a conjunction of their context elements (ce):

CC = CP ∧ CL =

n∧

i=1

cei ∧
m∧

h=1

ceh =

n+m∧

k=1

cek

IV. CONTEXT-AWARENESS IN GREEN MOVE

There are three main tasks for which a context-aware

approach is applied in the GM project: (1) producing a

personalized user experience, which involves the management

of the whole system and the interaction with users, (2) sensors

data retrieval and evaluation and (3) information distribution.
Tasks (1) and (2) are performed by the GMCA, while task

(3) is the responsibility of the GMID. In the following we

explore such tasks and how the GM system realizes them.

A. Personalized User Experience

Due to the user-centered perspective of the GM project,

context-aware techniques are used to tailor the user experience

against the users’ actual context.

Referring to the running example, we follow Mr. Verde, who

has just logged into the web interface to the GM system. He

is making a reservation for a car to be used the next morning

to take his grandchild to school. Since Mr. Verde performs the

same reservation every morning, the system is able to guess

that he may need a child seat by analyzing the current context

and the history of Mr. Verde’s previous context instances.

Contextual preferences are used to rank the data and ser-

vices, according to the interests demonstrated by the users in

the different contexts; for instance Mr. Verde will be offered a

vehicle with a children’s seat whenever he tries to reserve a car

for 8:00 in the morning. This analysis is performed automat-

ically by using the contextual preference-mining framework

(PreMINE) [11], [2]: indeed, while it would be unfeasible to

require a user to answer a large set of questions about his/her

interest and preferences in each possible context, it is possible

to use mining techniques to extract and learn them directly

from historical data.

Once Mr. Verde gets into the car and starts driving around

the city, the GMID service is able to identify useful informa-

tion (traffic jams, street works in progress, ...) with respect to

the context data fed to the system (e.g. values for location and

time dimensions). The pertinent information is provided to the

vehicle Green e-Box, to be displayed on its screen (if present)

or on Mr. Verde’s personal device, his smartphone, running

the client.

If Mr. Verde has already set up his private contextual data

on his personal device, the GMID service can send him ads

about possibly interesting offers (e.g., since he goes shopping,

grocery items on offer or a special sale of vegetables) and

other useful information according to his interests. The ranking

among interesting and not-interesting information is based

on the local context at hand and the matching is performed

directly on the the user device in order to preserve privacy.

B. Context-aware Sensors

Available bandwidth in mobile systems is considered a

scarcely-relevant issue due to the advent of powerful mobile

communication networks. Unfortunately, mobile networks can

have quality and/or overloading issues, resulting in decreased

net throughput. In a complex car-sharing system with social

interactions like GM many information flows have to be

managed and the issue needs attention.

Since frequent data transmission is the most energy-

consuming operation and can bring to network congestion,

operations on the sensed data (e.g. data aggregation) can be

performed locally on the sensing nodes, which can send larger

packets at lower frequency, instead of small sets of possibly

redundant values [5]. However timeliness constraints might

be strong and, in this case, the transmission protocol should

ensure a good compromise for a proper real-time behavior

651

Figure 3. The primary (a) and local (b) CDTs designed for the GM project

of the system (e.g. some key data about road events should

always be transmitted as soon as available).

To manage the data produced by sensors, we use the

PerLa (Pervasive Language) framework [13]: PerLa supports

locally managed operations on data in a finely controllable

and tunable fashion: the framework provides a declarative

SQL-like language and a middleware infrastructure suitable

for collecting data from different nodes of a pervasive system

made of sensors as well as all kinds of generic data-gathering

peripherals. The management of the gathered data is performed

hiding the complexity of the possibly high heterogeneity of the

underlying devices, which can span from RFID(s) to ad-hoc

sensor boards or even portable computers and smartphones.

Moreover, PerLa supports context-awareness for sensors [14]

and can be integrated in a general context-aware system based

on the CDT framework.

In our scenario, the data gathering process starts from the

moment Mr. Verde unlocks the doors of the assigned vehicle

and continues until he gets out of the vehicle releasing it

and making it available for the next reservation (the data

gathering process restarts for the next user). The whole process

is context-mediated by means of PerLa, collecting only data

useful for the current user and vehicle context. The data

gathered locally from sensors on the vehicle (GPS position,

speed, actual power consumption, ...) are pre-processed by the

Green e-Box (on which runs a PerLa module) and part of the

computation (possibly aggregation) is done by this component.

From Green e-Boxes data are pushed to the GM server using

the PerLa middleware infrastructure for further processing and

storage.

The system information distribution module (GMID) works

in a synchronous way: it receives a requests from a client,

containing its GPS position, and sends back useful data filtered

on this position to the client. Different user contexts need

different information retrieval frequencies also in order to

avoid congestion of the transmission channel; therefore, PerLa

also feeds sensors data to GMID. Moreover, the PerLa context

language helps us by allowing different settings in different

contexts (e.g. different sampling frequencies).

In order to show how to use the PerLa context language, we

introduce the following example. After declaring the contexts

as described in [14], PerLa allows the user to declare the

activities that the system must perform at run-time when these

contexts become active.

For instance, Mr. Verde can drive in two different zones

of the city: downtown, where battery charging stations are

close to each other, or in the suburbs, where they are located

farther away. Whether Mr. Verde is driving downtown or not

is detected by his GPS position: if the city center (identified

by its GPS coordinates) is farther than a predefined distance

max distance from the user actual GPS position then he is

driving in the suburbs, otherwise he is driving downtown. To

give him the needed information, we define in Listing 1 and 2

two different contexts:

Driving in the suburbs (Listing 1) this context will be en-

abled only if this precondition is true (ACTIVE IF clause);

in this case, the system will sample GPS position and

battery charge every 60 seconds if the battery charge is

<= 50% (SAMPLING EVERY . . . WHERE clause), only

if the vehicle is moving and the sensor provides GPS,

speed and battery charge data (EXECUTE IF clause); if

the battery charge is <= 35% an alarm is set (SET

PARAMETER . . . WHERE clause) and thus the system will

display the nearest charging station.

Driving downtown (Listing 2) if this context is enabled, the

system will sample GPS position and battery charge every

120 seconds if the battery charge is <= 50%, only if the

vehicle is moving and the sensor provides GPS, speed and

battery charge data; if the battery charge is <= 35% an

alarm is set and thus the system will display the nearest

652

charging station.

Furthermore, in both contexts the system checks every 5

minutes if a context switch is necessary (REFRESH EVERY

clause), modifying the sampling frequency as a consequence.

Listing 1. Suburb context
CREATE CONTEXT Suburbs_Driving
ACTIVE IF lat > center_lat + max_dist
AND long > center_long + max_dist

ON_ENABLE:
SELECT lat, long, batt_charge
SAMPLING EVERY 60 s WHERE batt_charge <= 0.5
EXECUTE IF EXIST lat, long, speed, batt_charge
AND speed > 0
SET PARAMETER ’alarm’ = TRUE
WHERE batt_charge <= 0.35;

ON_DISABLE:
DROP Suburbs_Driving;
SET PARAMETER ’alarm’ = FALSE;

REFRESH EVERY 5 m;

Listing 2. Downtown context
CREATE CONTEXT Downtown_Driving
ACTIVE IF lat <= center_lat + max_dist
AND long <= center_long + max_dist

ON_ENABLE:
SELECT lat, long, batt_charge
SAMPLING EVERY 120 s WHERE batt_charge <= 0.5
EXECUTE IF EXIST lat, long, speed, batt_charge
AND speed > 0s
SET PARAMETER ’alarm’ = TRUE
WHERE batt_charge <= 0.35;

ON_DISABLE:
DROP Downtown_Driving;
SET PARAMETER ’alarm’ = FALSE;

REFRESH EVERY 5 m;

Do note how the computation can be distributed among

the system components: all the processing involving battery

charge is executed locally to the Green E-box, sending data to

the GM server if and only if all the required conditions are

satisfied (speed > 0 AND batt charge <= 0.35) preserving

battery charge that might be wasted in frequent, unnecessary

transmissions. The results of the PerLa queries are also used

by the prototype described in Section V to retrieve data from

sensors, whenever needed.

C. Information Distribution
To tailor and distribute information coherent with users’

whereabouts and interests we need a powerful and customiz-

able, yet privacy-safe, distribution service: the GMID. To

realize such aim we adopt the PervAds framework [6], which,

in its original terms, defines a pervasive and privacy-respectful

approach to advertising. The framework has been customized

to obtain a general distribution channel retaining key privacy

aspects. The distribution service provides messages, that are

service messages or ads. In PervAds privacy control remains

(literally) with the user of the system: (sub)contexts composed

from the local-CDT elements remain on the user devices and

are used to filter locally the data that arrive from the GM

server.
In general, the distribution process comprises three steps:

1) on the central server the GMID system performs a pre-
filtering step of interesting messages for the client using

the part of context obtained from the primary CDT (e.g.

age, gender, time and distance among client GPS position

and ad/message geolocalized descriptor);

2) the set of pre-filtered messages is sent to the client (e.g.

user’s personal device), which performs the filtering step
– the private part of the matching – using configured

interest topics (local CDT context);

3) finally, the client displays only the subset of the received

messages matching the local CDT criteria: overall, the

information has been filtered according to the combined

CDT.

The message (e.g. an ad or traffic data) is composed of three

parts: i) a short caption, ii) an (optional) image and iii) a

data structure (e.g. an XML-like file) describing the topics

related to this specific ad or information (chosen among the

ones described in the local CDT). The party who wants to

broadcast a context-aware message (e.g. a shopkeeper or a

municipal traffic-information service) simply uploads it to an

appropriately conceived GM web page, and provides metadata

about time duration, geospatial information and other possible

topics, chosen among the ones mentioned in the CDT (b)

in Figure 3 and displayed by the GM advertisers interface.

Interest topics help to tailor visualizations of the ads over the

customer base, in order to target each advertisement campaign

on a set of specific, possibly interested users.

Resuming the running scenario, Mr. Verde has configured

his local client selecting the local context, e.g. personal interest

topics among the ones described in the local CDT of his

user category, like “I am interested in Chinese restaurants”

({cuisine = ethnic<Chinese>}) or “I am interested

in cloth shops which offer children assistance” ({Shop_type
= clothing, Shop_facilities = children}) or

“I am interested in traffic news” ({General_topic =
traffic}). The matching between the users’ local contexts

(note that these data are not stored in the main GM database,

but into a structure local to the client) and message metadata

is done on the user client, without sending any personally

identifiable information to the GM server: the GMID service

is only allowed to pre-filter messages on the basis of the

primary context, and send them over by means of anonymous

data associated with client devices. In our running scenario,

examples of the content of the primary context are user GPS

position and time information.

V. RAPID PROTOTYPE

We have implemented a rapid-development prototype based

on the GM specifications for data management. The main im-

plementation language is Answer Set Programming [9] (ASP),

in particular the DLV system [10]. We apply the techniques

described in [12] to implement (i) context management and

data tailoring for database access, (ii) modeling the vehicle

reservation system and using contextualized historical data to

assign and make forecasts about the availability of the vehicles

in a given time interval. As seen in Section IV-B, context

management at the level of sensors is directly made by PerLa.

Coherently with the system architecture described in Sec-

tion II, the prototype is composed of a main GM context-

aware component, the GMCA, and an information distribution

component, the GMID.

653

A. Context-aware data management component (GMCA)

This component supervises all the sharing services provided

through the system. For instance, the reservation process

provides functionalities like checking available vehicles, fore-

seeing to vehicles’ scheduling, proposing additional services

to the users, all taking into account their actual context and

historical contextual data.

The GMCA component has been divided into six ASP

modules, each dedicated to a specific task:

CDT definition represents the CDT in ASP (see an excerpt

in Listing 3)

Application constraint definition through which the de-

signer limits possible context instances excluding context-

element combinations

Database access : using Open DataBase Connectivity

(ODBC) [8], the DLV program accesses the GM

database reported in Figure 2 to build contextual views

of the data

Partial-view definition allows, at design time, to associate

each context element with the related portion of data

Context-instance recognition is based on context data cap-

tured from the user, sensors and mining historical data

Run time contextual-view generation combines the partial

views previously associated with the context elements

which compose the current context.

At run time, the system detects sensor values (e.g. the

position, from GPS coordinates) and collects other contextual

information from the user (e.g. current interest topic); this in-

formation gives values to CDT dimensions, and thus generates

the corresponding context elements. The logic program that

encodes the definition, properties and constraints of the CDT

is run against the collected context elements, generating one or

more models which are in fact the current contest instance(s),

in the typical ASP style.

Listing 3. Excerpt from the ASP representation of the GM CDT
%dimension(Dimension)
dimension(role).
dimension(interest_topic).
dimension(vehicle_type). [...]

%value(Value).
value(greenmove_root).
value(customer).
value(car). [...]

%dim2val(Dimension, Value).
dim2val(role,customer).
dim2val(vehicle_type,scooter).
dim2val(vehicle_type,car). [...]

%val2dim(Value, Dimension).
val2dim(root,role).
val2dim(root,interest_topic).
val2dim(root,vehicle_type). [...]

Once the current context(s) have been generated, the ASP

program computes the contextual views [12]. Each contextual

view provides a version of the database appropriately tailored

according to the current context. At design time, together with

the CDT, the designer has defined as many partial views [12]

as the context elements from the CDT; each partial view

represents the fragment of the original dataset which has

been recognized by the designer as interesting for that context

element. The contextual view associated with a generic context

is then generated at run time by intersecting the partial views

defined for its context elements, and presented to the user for

further querying, as required.

As an example, context data together with data about

vehicles, users and reservations becomes the input of the DLV

program which manages the reservation process (henceforth

the reservation system). This reservation system evaluates

all information at its disposal and generates the vehicle

reservation schedule; at the end, reservations are fixed and

should not be modified without user intervention. In order

to do this, the reservation system evaluates all the vehicles’

possible states (a vehicle could be available, reserved, out of
service, in charge or under maintenance) and tries to satisfy

all reservation requests (part of this prototype code is shown

in Listing 4), although sometimes it might not be possible.

The system generates all the possible assignments of vehicles

to reservations, ordering such alternatives from the best one

to the worst one, according to their ability to satisfy all the

constraints (like the last constraint reported in Listing 4). At

the end of the process, the best alternative is stored in the

database, and vehicles are assigned according to this. Note

that the final GM system envisages the optimization of vehicle

reservations by means of sophisticated operations research

algorithms.

Listing 4. Excerpt from the ASP code for reservations handling
% Assign a vehicle to a reservation
assignment(VId,ResrvId) v -assignment(VId,ResrvId)

:- reservation(ResrvId, _, _, _, _, _, _, _),
vehicle(VId, _).

% If two reservations overlaps,
%two different vehicles must be assigned to them
:- overlaps_resrv(ResrvId1, ResrvId2),

assignment(VId1, ResrvId1),
assignment(VId2, ResrvId2), VId1 == VId2.

% A vehicle can be assigned to a
% reservation iff it is not locked by a constraint
:- assignment(VId1, ResrvId),

not_avail_assignable(VId2, ResrvId),
VId1 == VId2.

% Only a vehicle must be assigned to a reservation
:- assignment(VId1,ResrvId),

assignment(VId2, ResrvId),
VId1 != VId2.

% Try to satisfy all reservations
:˜ reservation(ResrvId, User, StartDay,

StartHour, EndDay, EndHour, _, _),
not assignment(VId, ResrvId),
vehicle(VId, _). [1:1]

In addition, the reservation system infers from the user’s

context data a set of possibly useful services to suggest him/her

during reservation confirmation.

B. Information distribution component (GMID)

The GMID component takes care of distributing ads and

service messages. The architecture of the GMID includes three

submodules: (1) a web interface (mgmtGUI) to manage service

messages and ads, (2) a dedicated web-service (the GMID

654

core service) that coordinates the client-server interaction and

(3) a client application (client App) that provides local filtering

capabilities and an interface to the web-service.

The mgmtGUI and the GMID core service use Java EE tech-

nologies, while the information (ads, information messages)

storage solution relies on an ad-hoc geolocalized NoSQL DB.

The mgmtGUI (1) provides users (ad designers, shop own-

ers) with a simple interface to manage information messages

and ads; it acquires the target interest topics from the CDT to

be matched and attaches such metadata to messages and ads

for subsequent filtering.

The GMID core service (2) provides the pre-filtering step
described in Section IV-C, which reduces the data to be

transmitted to the user client to a few sets of useful ads and

information messages using the primary user context. It knows

the combined CDT and, in particular, is aware of the local

CDT structure that will be used to perform the last filtering

on the client. The GMID core service will use contextual views

generated using the already described ASP logic program and

the information about its messages and ads to perform the

pre-filtering step (see Section IV-C).

The client App (3) is an Android application that coordi-

nates both the user personal device (e.g. a smartphone, where

it has to be installed) and the Green e-Box (where it is

provided by default) overseeing the interaction with the GMID

core service. During the first access, the application must be

initialized by asking the user to choose among the possible

interest categories on the local CDT and if traffic information

has to be displayed. After the initialization, the client App

will begin interaction with the GMID core service, periodically

updating its reference data with a unique ID different from the

userID; once the reference data have been received, the GMID

core starts serving the client. The set of selected information

messages and ads is sent to the client App, which performs the

final filtering based on the local context and displays only the

most interesting ones to the user, as described in Section IV-C.

VI. CONCLUSION AND FUTURE WORK

Urban mobility and energy saving are among the driving

factors in future smart-city planning and development. The

Green Move project aims at realizing a zero-emission-vehicle

(ZEV) sharing service, that also includes ubiquitous informa-

tion distribution in order to assist the driver both in driving

and in personal activities. In this paper we gave an account

of its context-and-preference-aware information collection and

dissemination service based on the Context Dimension Tree

for context-aware data management, on the PerLa sensor

language, and on the personal advertising platform PervAds,

which allow to provide the right information to the right

person at the right moment and place. The generality of the

used platforms has allowed rapid prototyping of the main

system components, and will foster a rapid transformation

from the prototype state to the full system. The prototype will

be installed and tried on the GM fleet of electric vehicles in

the city of Milan from next September.

VII. ACKNOWLEDGMENTS

This research is funded by the Regione Lombardia project

Green Move. The project is also partially supported by

the European Commission, Programme IDEAS-ERC, Project

227977-SMScom and by the Industria 2015 project SENSORI.

We would like to thank all the researchers of Politecnico di

Milano involved in the Green Move project, and especially

Angelo Morzenti and Matteo Rossi. Moreover, we thank

Davide Martinenghi, Giorgio Orsi and Lorenzo Carrara for

their support during the design of the Green Move context-

aware subsystem and of the PervAds framework.

REFERENCES

[1] G. Alli et al. Green Move: towards next generation sustainable
smartphone-based vehicle sharing. In Proc. of SustainIT 2012, 2012.
To appear.

[2] D. Beretta, E. Quintarelli, and E. Rabosio. Mining context-aware
preferences on relational and sensor data. In F. Morvan, A. M. Tjoa, and
R. Wagner, editors, DEXA Workshops, pages 116–120. IEEE Computer
Society, 2011.

[3] C. Bolchini, C. A. Curino, G. Orsi, E. Quintarelli, R. Rossato, F. A.
Schreiber, and L. Tanca. And what can context do for data? Commun.
ACM, 52(11):136–140, 2009.

[4] C. Bolchini, E. Quintarelli, and L. Tanca. CARVE: Context-aware
automatic view definition over relational databases. Information Systems,
Accepted manuscript (unedited version) available online: 12-MAY-2012,
2012.

[5] C. Cappiello and F. A. Schreiber. Quality- and energy-aware data
compression by aggregation in wsn data streams. In Proceedings of
the 2009 IEEE International Conference on Pervasive Computing and
Communications, PERCOM ’09, pages 1–6, Washington, DC, USA,
2009. IEEE Computer Society.

[6] L. Carrara and G. Orsi. A new perspective in pervasive advertising.
Technical report, Department of Computer Science, University of Ox-
ford, July 2011.

[7] A. K. Dey. Understanding and using context. Personal Ubiquitous
Computing, 5(1):4–7, 2001.

[8] K. Geiger. Inside ODBC. Microsoft Press, Redmond, WA, USA, 1995.
[9] M. Gelfond and V. Lifschitz. The stable model semantics for logic

programming. In R. A. Kowalski and K. Bowen, editors, Proceedings of
the Fifth International Conference on Logic Programming, pages 1070–
1080, Cambridge, Massachusetts, 1988. The MIT Press.

[10] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello. The dlv system for knowledge representation and reasoning.
ACM Trans. Comput. Logic, 7(3):499–562, 2006.

[11] A. Miele, E. Quintarelli, and L. Tanca. A methodology for preference-
based personalization of contextual data. In M. L. Kersten, B. Novikov,
J. Teubner, V. Polutin, and S. Manegold, editors, EDBT, volume 360
of ACM International Conference Proceeding Series, pages 287–298.
ACM, 2009.

[12] A. Rauseo, D. Martinenghi, and L. Tanca. Context-aware data tailoring
through answer set programming. In G. Mecca and S. Greco, editors,
Proceedings of the 19th Italian Symposium on Advanced Database
Systems, pages 131–138, June 2011.

[13] F. Schreiber, R. Camplani, M. Fortunato, M. Marelli, and G. Rota.
PerLa: A language and middleware architecture for data management
and integration in pervasive information systems. IEEE Transactions on
Software Engineering, 38(2):478 –496, march-april 2012.

[14] F. Schreiber, L. Tanca, R. Camplani, and D. Viganó. Towards autonomic
pervasive systems: the PerLa context language. In Proc. of the 6th
International Workshop on Networking Meets Databases Co-located
with SIGMOD 2011, June 2011.

[15] M. Wieser. The computer for the 21st century. Scientific American,
265:94–104, September 1991.

655

